Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1

Author:

Semenza Gregg L.1

Affiliation:

1. Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A., Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A., Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A., Department of Oncology, The Johns Hopkins University Scho

Abstract

The survival of metazoan organisms is dependent upon the utilization of O2 as a substrate for COX (cytochrome c oxidase), which constitutes Complex IV of the mitochondrial respiratory chain. Premature transfer of electrons, either at Complex I or at Complex III, results in the increased generation of ROS (reactive oxygen species). Recent studies have identified two critical adaptations that may function to prevent excessive ROS production in hypoxic cells. First, expression of PDK1 [PDH (pyruvate dehydrogenase) kinase 1] is induced. PDK1 phosphorylates and inactivates PDH, the mitochondrial enzyme that converts pyruvate into acetyl-CoA. In combination with the hypoxia-induced expression of LDHA (lactate dehydrogenase A), which converts pyruvate into lactate, PDK1 reduces the delivery of acetyl-CoA to the tricarboxylic acid cycle, thus reducing the levels of NADH and FADH2 delivered to the electron-transport chain. Secondly, the subunit composition of COX is altered in hypoxic cells by increased expression of the COX4-2 subunit, which optimizes COX activity under hypoxic conditions, and increased degradation of the COX4-1 subunit, which optimizes COX activity under aerobic conditions. Hypoxia-inducible factor 1 controls the metabolic adaptation of mammalian cells to hypoxia by activating transcription of the genes encoding PDK1, LDHA, COX4-2 and LON, a mitochondrial protease that is required for the degradation of COX4-1. COX subunit switching occurs in yeast, but by a completely different regulatory mechanism, suggesting that selection for O2-dependent homoeostatic regulation of mitochondrial respiration is ancient and likely to be shared by all eukaryotic organisms.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3