Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak

Author:

Kubli Dieter A.1,Ycaza John E.1,Gustafsson Åsa B.

Affiliation:

1. Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, U.S.A.

Abstract

Bnip3 is a pro-apoptotic member of the Bcl-2 family that is down-regulated in pancreatic cancers, which correlates with resistance to chemotherapy and a worsened prognosis. In contrast, Bnip3 is up-regulated in heart failure and contributes to loss of myocardial cells during I/R (ischaemia/reperfusion). Bnip3 exerts its action at the mitochondria, but the mechanism by which Bnip3 mediates mitochondrial dysfunction is not clear. In the present study, we have identified Bax and Bak as downstream effectors of Bnip3-mediated mitochondrial dysfunction. Bnip3 plays a role in hypoxia-mediated cell death, but MEFs (mouse embryonic fibroblasts) derived from mice deficient in Bax and Bak were completely resistant to hypoxia even with substantial up-regulation of Bnip3. These cells were also resistant to Bnip3 overexpression, but re-expression of Bax or Bak restored susceptibility to Bnip3, suggesting that Bnip3 can act via either Bax or Bak. In contrast, Bnip3 overexpression in wild-type MEFs induced mitochondrial dysfunction with loss of membrane potential and release of cytochrome c. Cell death by Bnip3 was reduced in the presence of mPTP (mitochondrial permeability transition pore) inhibitors, but did not prevent Bnip3-mediated activation of Bax or Bak. Moreover, overexpression of Bnip3ΔTM, a dominant-negative form of Bnip3, reduced translocation of GFP (green fluorescent protein)–Bax to mitochondria during sI/R (simulated I/R) in HL-1 myocytes. Similarly, down-regulation of Bnip3 using RNA interference decreased activation of Bax in response to sI/R in HL-1 myocytes. These results suggest that Bnip3 mediates mitochondrial dysfunction through activation of Bax or Bak which is independent of mPTP opening.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3