Structural composition and functional characterization of soluble CD59: heterogeneity of the oligosaccharide and glycophosphoinositol (GPI) anchor revealed by laser-desorption mass spectrometric analysis

Author:

MERI Seppo1,LEHTO Timo1,SUTTON Chris W.2,TYYNELÄ Jaana3,BAUMANN Marc3

Affiliation:

1. Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Finland

2. Thermo Bioanalysis Ltd, Hemel Hempstead, U.K.

3. Department of Medical Chemistry, FIN-00014, University of Helsinki, Finland

Abstract

CD59 (protectin) is a glycophosphoinositol (GPI)-anchored inhibitor of the membrane attack complex of complement found on blood cells, endothelia and epithelial cells. In addition to the lipid-tailed CD59, soluble lipid-free forms of CD59 are present in human body fluids. We have investigated the detailed structural composition of the naturally occurring soluble urinary CD59 (CD59U) using peptide mapping, anion-exchange chromatography, sequential exoglycosidase digestion and matrix-assisted laser-desorption mass spectrometry (MALDI-MS). CD59U exhibited an average Mr of 12444 in MALDI-MS. Mass analysis of the isolated C-terminal peptide (T9) indicated that a GPI-anchor (at Asn-77) without an inositol-associated phospholipid was present in soluble CD59U. By using residue-specific exoglycosidases, chemical modification and MALDI-MS structures of seven different GPI-anchor variants were determined. Variant forms of the anchor had deletions and/or extensions of one or more monosaccharide units. Sialic acid linked to an N-acetylhexosamine-galactose arm was found in two GPI-anchor variants. The N-linked carbohydrate side chain of CD59U (at Asn-18) also displayed considerable heterogeneity. The predominant oligosaccharide chains were fucosylated biantennary and triantennary complexes with variable sialylation. Mono Q anion-exchange chromatography resolved urinary CD59 into nine different fractions that bound equally well to the terminal complement SC5b–8 complexes. Despite binding to C5b–8, soluble CD59U inhibited complement lysis at an approx. 200-fold lower efficiency than erythrocyte CD59. These results document the structural heterogeneity of both the GPI anchor and N-linked oligosaccharide of CD59 and demonstrate that the phospholipid tail is needed for the full functional activity of CD59. The site of cleavage between the diradylglycerol phosphate and inositol suggests that a mammalian phospholipase D could be involved in the solubilization of GPI-anchored proteins.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3