Inhibition of MEK/ERK1/2 signalling alters endothelial nitric oxide synthase activity in an agonist-dependent manner

Author:

Cale Jacqueline M.1,Bird Ian M.1

Affiliation:

1. Department of Obstetrics and Gynecology, The University of Wisconsin-Madison, Madison, WI 53715, U.S.A.

Abstract

eNOS (endothelial nitric oxide synthase) activity is post-translationally regulated in a complex fashion by acylation, protein–protein interactions, intracellular trafficking and phosphorylation, among others. Signalling pathways that regulate eNOS activity include phosphoinositide 3-kinase/Akt, cyclic nucleotide-dependent kinases [PKA (protein kinase A) and PKG], PKC, as well as ERKs (extracellular-signal-regulated kinases). The role of ERKs in eNOS activation remains controversial. In the present study, we have examined the role of ERK1/2 in eNOS activation in HUVEC-CS [transformed HUVEC (human umbilical-vein endothelial cells)] as well as a widely used model for eNOS study, transiently transfected COS-7 cells. U0126 pretreatment of HUVEC-CS potentiated ATP-stimulated eNOS activity, independent of changes in intracellular Ca2+ concentration ([Ca2+]i). In COS-7 cells transiently expressing ovine eNOS, U0126 potentiated A23187-stimulated eNOS activity, but inhibited ATP-stimulated activity. Compensatory changes in phosphorylation of five key eNOS residues did not account for changes in A23187-stimulated activity. However, in the case of ATP, altered phosphorylation and changes in [Ca2+]i may partially contribute to U0126 inhibition of activity. Finally, seven eNOS alanine mutants of putative ERK1/2 targets were generated and the effects of U0126 pretreatment on eNOS activity were gauged with A23187 and ATP treatment. T97A-eNOS was the only construct significantly different from wild-type after U0126 pretreatment and ATP stimulation of eNOS activation. In the present study, eNOS activity was either potentiated or inhibited in COS-7 cells, suggesting agonist dependence for MEK/ERK1/2 signalling [where MEK is MAPK (mitogen-activated protein kinase)/ERK kinase] to eNOS and a complex mechanism including [Ca2+]i, phosphorylation and, possibly, intracellular trafficking.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3