Subtype-specific regulation of equilibrative nucleoside transporters by protein kinase CK2

Author:

STOLK Meaghan1,COOPER Elizabeth1,VILK Greg2,LITCHFIELD David W.2,HAMMOND James R.1

Affiliation:

1. Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5C1

2. Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1

Abstract

Two subtypes of equilibrative transporters, es (equilibrative inhibitor-sensitive) and ei (equilibrative inhibitor-insensitive), are responsible for the majority of nucleoside flux across mammalian cell membranes. Sequence analyses of the representative genes, ENT1 {equilibrative nucleoside transporter 1; also known as SLC29A1 [solute carrier family 29 (nucleoside transporters), member 1]} and ENT2 (SLC29A2), suggest that protein kinase CK2-mediated phosphorylation may be involved in the regulation of es- and ei-mediated nucleoside transport. We used human osteosarcoma cells transfected with catalytically active or inactive α′ and α subunits of CK2 to assess the effects of CK2 manipulation on nucleoside transport activity. Expression of inactive CK2α′ (decreased CK2α′ activity) increased the number of binding sites (∼1.5-fold) for the es-specific probe [3H]NBMPR ([3H]nitrobenzylthioinosine), and increased (∼1.8-fold) the Vmax for 2-chloro[3H]adenosine of the NBMPR-sensitive (es) nucleoside transporter. There was a concomitant decrease in the Vmax of the NBMPR-resistant (ei-mediated) uptake of 2-chloro[3H]adenosine. This inhibition of CK2α′ activity had no effect, however, on either the KD of [3H]NBMPR binding or the Km of 2-chloro[3H]adenosine uptake. Quantitative PCR showed a transient decrease in the expression of both hENT1 (human ENT1) and hENT2 mRNAs within 4–12 h of induction of the inactive CK2α′ subunit, but both transcripts had returned to control levels by 24 h. These data suggest that inhibition of CK2α′ reduced ei activity by attenuation of hENT2 transcription, while the increase in es/hENT1 activity was mediated by post-translational action of CK2. The observed modification in es activity was probably due to a CK2α′-mediated change in the phosphorylation state of the ENT1 protein, or an interacting protein, effecting an increase in the plasma membrane lifetime of the transport proteins.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3