Bidirectional transport of 2-chloroadenosine by equilibrative nucleoside transporter 4 (hENT4): Evidence for allosteric kinetics at acidic pH

Author:

Tandio David,Vilas Gonzalo,Hammond James R.

Abstract

Abstract Adenosine has been reported to be transported by equilibrative nucleoside transporter 4 (ENT4), encoded by the SLC29A4 gene, in an acidic pH-dependent manner. This makes hENT4 of interest as a therapeutic target in acidic pathologies where adenosine is protective (e.g. vascular ischaemia). We examined the pH-sensitivity of nucleoside influx and efflux by hENT4 using a recombinant transfection model that lacks the confounding influences of other nucleoside transporters (PK15-NTD). We established that [3H]2-chloroadenosine, which is resistant to metabolism by adenosine deaminase, is a substrate for hENT4. Transport of [3H]2-chloroadenosine at a pH of 6.0 in PK15-NTD cells stably transfected with SLC29A4 was biphasic, with a low capacity (Vmax ~ 30 pmol/mg/min) high-affinity component (Km ~ 50 µM) apparent at low substrate concentrations, which shifted to a high capacity (Vmax ~ 500 pmol/mg/min) low affinity system (Km > 600 µM) displaying positive cooperativity at concentrations above 200 µM. Only the low affinity component was observed at a neutral pH of 7.5 (Km ~ 2 mM). Efflux of [3H]2-chloroadenosine from these cells was also enhanced by more than 4-fold at an acidic pH. Enhanced influx and efflux of nucleosides by hENT4 under acidic conditions supports its potential as a therapeutic target in pathologies such as ischaemia-reperfusion injury.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3