Lipoprotein distribution and serum concentrations of 7α-hydroxy-4-cholesten-3-one and bile acids: effects of monogenic disturbances in high-density lipoprotein metabolism

Author:

Steiner Carine12,Holleboom Adriaan G.3,Karuna Ratna12,Motazacker Mohammad M.3,Kuivenhoven Jan Albert3,Frikke-Schmidt Ruth4,Tybjaerg-Hansen Anne4,Rohrer Lucia15,Rentsch Katharina M.15,von Eckardstein Arnold125

Affiliation:

1. Institute of Clinical Chemistry, University Hospital Zurich, CH-8091 Zurich, Switzerland

2. Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich and University of Zurich, CH-8093 Zurich, Switzerland

3. Department of Experimental Vascular Medicine, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands

4. Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark

5. Center for Integrative Human Physiology, University of Zurich, CH-8093 Zurich, Switzerland

Abstract

BA (bile acid) formation is considered an important final step in RCT (reverse cholesterol transport). HDL (high-density lipoprotein) has been reported to transport BAs. We therefore investigated the effects of monogenic disturbances in human HDL metabolism on serum concentrations and lipoprotein distributions of the major 15 BA species and their precursor C4 (7α-hydroxy-4-cholesten-3-one). In normolipidaemic plasma, approximately 84%, 11% and 5% of BAs were recovered in the LPDS (lipoprotein-depleted serum), HDL and the combined LDL (low-density lipoprotein)/VLDL (very-low-density lipoproteins) fraction respectively. Conjugated BAs were slightly over-represented in HDL. For C4, the respective percentages were 23%, 21% and 56% (41% in LDL and 15% in VLDL) respectively. Compared with unaffected family members, neither HDL-C (HDL-cholesterol)-decreasing mutations in the genes APOA1 [encoding ApoA-I (apolipoprotein A-I], ABCA1 (ATP-binding cassette transporter A1) or LCAT (lecithin:cholesterol acyltransferase) nor HDL-C-increasing mutations in the genes CETP (cholesteryl ester transfer protein) or LIPC (hepatic lipase) were associated with significantly different serum concentrations of BA and C4. Plasma concentrations of conjugated and secondary BAs differed between heterozygous carriers of SCARB1 (scavenger receptor class B1) mutations and unaffected individuals (P<0.05), but this difference was not significant after correction for multiple testing. Moreover, no differences in the lipoprotein distribution of BAs in the LPDS and HDL fractions from SCARB1 heterozygotes were observed. In conclusion, despite significant recoveries of BAs and C4 in HDL and despite the metabolic relationships between RCT and BA formation, monogenic disorders of HDL metabolism do not lead to altered serum concentrations of BAs and C4.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3