Genetic hypogonadal mouse model reveals niche-specific influence of reproductive axis and sex on intestinal microbial communities

Author:

Sisk-Hackworth Laura,Brown Jada,Sau Lillian,Levine Andrew A.,Tam Lai Ying Ivy,Ramesh Aishwarya,Shah Reeya S.,Kelley-Thackray Evelyn T.,Wang Sophia,Nguyen Anita,Kelley Scott T.,Thackray Varykina G.ORCID

Abstract

Abstract Background The gut microbiome has been linked to many diseases with sex bias including autoimmune, metabolic, neurological, and reproductive disorders. While numerous studies report sex differences in fecal microbial communities, the role of the reproductive axis in this differentiation is unclear and it is unknown how sex differentiation affects microbial diversity in specific regions of the small and large intestine. Methods We used a genetic hypogonadal mouse model that does not produce sex steroids or go through puberty to investigate how sex and the reproductive axis impact bacterial diversity within the intestine. Using 16S rRNA gene sequencing, we analyzed alpha and beta diversity and taxonomic composition of fecal and intestinal communities from the lumen and mucosa of the duodenum, ileum, and cecum from adult female (n = 20) and male (n = 20) wild-type mice and female (n = 17) and male (n = 20) hypogonadal mice. Results Both sex and reproductive axis inactivation altered bacterial composition in an intestinal section and niche-specific manner. Hypogonadism was significantly associated with bacteria from the Bacteroidaceae,Eggerthellaceae,Muribaculaceae, and Rikenellaceae families, which have genes for bile acid metabolism and mucin degradation. Microbial balances between males and females and between hypogonadal and wild-type mice were also intestinal section-specific. In addition, we identified 3 bacterial genera (EscherichiaShigella, Lachnoclostridium, and Eggerthellaceaegenus) with higher abundance in wild-type female mice throughout the intestinal tract compared to both wild-type male and hypogonadal female mice, indicating that activation of the reproductive axis leads to female-specific differentiation of the gut microbiome. Our results also implicated factors independent of the reproductive axis (i.e., sex chromosomes) in shaping sex differences in intestinal communities. Additionally, our detailed profile of intestinal communities showed that fecal samples do not reflect bacterial diversity in the small intestine. Conclusions Our results indicate that sex differences in the gut microbiome are intestinal niche-specific and that sampling feces or the large intestine may miss significant sex effects in the small intestine. These results strongly support the need to consider both sex and reproductive status when studying the gut microbiome and while developing microbial-based therapies.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Gender Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3