The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin IX in the μ-oxo dimeric form: an oxidative buffer and possible pathogenic mechanism

Author:

SMALLEY John W.1,SILVER Jack2,MARSH Paul J.2,BIRSS Andrew J.1

Affiliation:

1. Unit of Oral Biology, Department of Clinical Dental Sciences, The University of Liverpool, Liverpool L69 3BX, U.K.

2. School of Chemical and Life Sciences, The University of Greenwich, Woolwich Campus, Woolwich, London SE18 6PF, U.K.

Abstract

Mössbauer spectroscopy was used to re-evaluate iron protoporphyrin IX, FePPIX, binding and the chemical nature of the black iron porphyrin pigment of Porphyromonas gingivalis. We demonstrate that FePPIX is bound to the cell in the µ-oxo dimeric form, [Fe(III)PPIX]2O, and that the iron porphyrin pigment is also composed of this material. P. gingivalis also assimilated monomeric Fe(II)- and Fe(III)PPIX into µ-oxo dimers in vitro. Scatchard analysis revealed a greater binding maximum of cells for µ-oxo dimers than for monomeric Fe(III)-or Fe(II)PPIX, although the relative affinity constant for the dimers was lower. Formation of [Fe(III)PPIX]2O via reactions of Fe(II)PPIX with oxygen, and its toxic derivatives, would serve as an oxidative buffer and permit P. gingivalis and other black-pigmenting anaerobes to engender and maintain a local anaerobic environment. Tying up of free oxygen species with iron protoporphyrin IX would also reduce and limit Fe(II)PPIX-mediated oxygen-radical cell damage. More importantly, formation of a cell-surface µ-oxo dimer layer may function as a protective barrier against assault by reactive oxidants generated by neutrophils. Selective interference with these mechanisms would offer the possibility of attenuating the pathogenicity of P. gingivalis and other iron protoporphyrin IX-binding pathogens whose virulence is regulated by this reactive molecule.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3