Catechol oxygenase induction in Pseudomonas aeruginosa

Author:

Farr D. R.1,Cain R B1

Affiliation:

1. Microbiology Group, Department of Botany, University of Newcastle upon Tyne

Abstract

1. The transfer from benzenesulphonate to benzoate as a growth substrate for Pseudomonas aeruginosa strain A resulted in a change in the enzymic route by which catechol was degraded; at intermediate stages it was possible to obtain cells containing the enzymes of both the ‘ortho’ and ‘meta’ metabolic pathways. 2. A similar result was effected by the reverse transfer, benzoate to benzenesulphonate. 3. Catechol itself always elicited a catechol 2,3-oxygenase in uninduced cells, but the product of this reaction, 2-hydroxymuconic semialdehyde, and biochemically related compounds such as 4-hydroxy-2-oxovalerate, unexpectedly induced a catechol 1,2-oxygenase. 4. Both types of catechol oxygenase are strongly repressed by the metabolic end products of both the ‘ortho’ and ‘meta’ pathways, but there was no inhibition of enzymic activity by these end products.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3