Genomic and structural aspects of protein evolution

Author:

Chothia Cyrus1,Gough Julian2

Affiliation:

1. MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, U.K.

2. Computer Science Department, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, U.K.

Abstract

It has been known for more than 35 years that, during evolution, new proteins are formed by gene duplications, sequence and structural divergence and, in many cases, gene combinations. The genome projects have produced complete, or almost complete, descriptions of the protein repertoires of over 600 distinct organisms. Analyses of these data have dramatically increased our understanding of the formation of new proteins. At the present time, we can accurately trace the evolutionary relationships of about half the proteins found in most genomes, and it is these proteins that we discuss in the present review. Usually, the units of evolution are protein domains that are duplicated, diverge and form combinations. Small proteins contain one domain, and large proteins contain combinations of two or more domains. Domains descended from a common ancestor are clustered into superfamilies. In most genomes, the net growth of superfamily members means that more than 90% of domains are duplicates. In a section on domain duplications, we discuss the number of currently known superfamilies, their size and distribution, and superfamily expansions related to biological complexity and to specific lineages. In a section on divergence, we describe how sequences and structures diverge, the changes in stability produced by acceptable mutations, and the nature of functional divergence and selection. In a section on domain combinations, we discuss their general nature, the sequential order of domains, how combinations modify function, and the extraordinary variety of the domain combinations found in different genomes. We conclude with a brief note on other forms of protein evolution and speculations of the origins of the duplication, divergence and combination processes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference84 articles.

1. Structure of haemoglobin;Perutz;Nature,1960

2. Chemical and biological evolution of a nucleotide-binding protein;Rossmann;Nature,1974

3. I. Serine proteases: the structure of α-chymotrypsin;Birktoft;Philos. Trans. R. Soc. London Ser. B,1970

4. Structural evidence for gene duplication in the evolution of the acid proteases;Tang;Nature,1978

5. Exons and introns;Patthy;Curr. Opin. Struct. Biol.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3