Thiocyanate, a plausible physiological electron donor of gastric peroxidase

Author:

Das D1,De P K1,Banerjee R K1

Affiliation:

1. Department of Physiology, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Calcutta 700 032, India

Abstract

Gastric peroxidase (GPO) was purified to apparent homogeneity to characterize its major physiological electron donor. The enzyme (RZ = 0.7), with a subunit molecular mass of 50 kDa, is a glycoprotein, with a relative abundance of aspartic and glutamic acid over arginine and lysine. It has a Soret maximum at 412 nm, which is shifted to 426 nm by H2O2 due to formation of compound II. Although the physiological electron donors I-, Br- and SCN-, but not Cl-, are oxidized by GPO optimally at acid pH, only I- and SCN- are oxidized appreciably at physiological pH. Considering that the I- concentration in stomach is less than 1 microM, whereas the SCN- concentration is about 250 microM, SCN- may act as a major electron donor for GPO. Moreover, SCN- oxidation remains unaltered in the presence of physiological concentrations of other halides. The second-order rate constant for the reaction of GPO with H2O2 (k1) and compound I with SCN- (k2) at pH 7 was found to be 8 x 10(7) M-1.s-1 and 2 x 10(5) M-1.s-1 respectively. GPO has significant pseudocatalase activity also in the presence of I- or Br-, but it is blocked by SCN-. The SCN- oxidation product OSCN- may be reduced back to SCN- by cellular GSH, and GSSG may be reduced back to GSH by glutathione reductase and NADPH. In a system reconstituted with pure glutathione reductase, NADPH, GSH, SCN- and H2O2. GPO-catalysed SCN- oxidation could be coupled to NADPH oxidation. This system where GPO utilizes SCN- as the major physiological electron donor may operate efficiently to scavenge intracellular H2O2.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3