MerA functions as a hypothiocyanous acid reductase and defense mechanism in Staphylococcus aureus

Author:

Shearer Heather L.1ORCID,Loi Vu V.2,Weiland Paul34,Bange Gert35ORCID,Altegoer Florian36,Hampton Mark B.1ORCID,Antelmann Haike2ORCID,Dickerhof Nina1ORCID

Affiliation:

1. Centre for Free Radical Research, Department of Pathology and Biomedical Science University of Otago Christchurch Christchurch New Zealand

2. Freie Universität Berlin, Institute of Biology‐Microbiology Berlin Germany

3. Center for Synthetic Microbiology (SYNMIKRO), Department of Chemistry Philipps‐University Marburg Marburg Germany

4. Center for Tumor Biology and Immunology, Department of Medicine Philipps‐University Marburg Marburg Germany

5. Max‐Planck Institute for Terrestrial Microbiology Marburg Germany

6. Institute of Microbiology, Heinrich Heine University Düsseldorf Düsseldorf Germany

Abstract

AbstractThe major pathogen Staphylococcus aureus has to cope with host‐derived oxidative stress to cause infections in humans. Here, we report that S. aureus tolerates high concentrations of hypothiocyanous acid (HOSCN), a key antimicrobial oxidant produced in the respiratory tract. We discovered that the flavoprotein disulfide reductase (FDR) MerA protects S. aureus from this oxidant by functioning as a HOSCN reductase, with its deletion sensitizing bacteria to HOSCN. Crystal structures of homodimeric MerA (2.4 Å) with a Cys43–Cys48 intramolecular disulfide, and reduced MerACys43S (1.6 Å) showed the FAD cofactor close to the active site, supporting that MerA functions as a group I FDR. MerA is controlled by the redox‐sensitive repressor HypR, which we show to be oxidized to intermolecular disulfides under HOSCN stress, resulting in its inactivation and derepression of merA transcription to promote HOSCN tolerance. Our study highlights the HOSCN tolerance of S. aureus and characterizes the structure and function of MerA as a major HOSCN defense mechanism. Crippling the capacity to respond to HOSCN may be a novel strategy for treating S. aureus infections.

Funder

Canterbury Medical Research Foundation

Health Research Council of New Zealand

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3