Conserved C-terminal residues within the lectin-like domain of LOX-1 are essential for oxidized low-density-lipoprotein binding

Author:

CHEN Mingyi12,NARUMIYA Shuh2,MASAKI Tomoh1,SAWAMURA Tatsuya13

Affiliation:

1. National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan,

2. Department of Pharmacology, Faculty of Medicine, Kyoto University, Kyoto 606, Japan

3. Department of Molecular Pathophysiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan

Abstract

Lectin-like oxidized low-density-lipoprotein (oxLDL) receptor-1 (LOX-1) is a cell-surface endocytosis receptor for atherogenic oxLDL, which is highly expressed in endothelial cells. Recent studies suggest that it may play significant roles in atherogenesis. LOX-1 is a type-II membrane protein that structurally belongs to the C-type lectin family molecules. This study was designed to characterize the specific domain on LOX-1 that recognizes oxLDL. Truncation of the lectin domain of LOX-1 abrogated oxLDL-binding activity. Deletion of the utmost C-terminal ten amino acid residues (261-270) was enough to disrupt the oxLDL-binding activity. Substitutions of Lys-262 and/or Lys-263 with Ala additively attenuated the activity. Serial-deletion analysis showed that residues up to 265 are required for the expression of minimal binding activity, although deletion of the C-terminal three residues (268-270) still retained full binding activity. Consistently, these alterations in LOX-1 impaired the recognition by a functionally blocking monoclonal antibody for LOX-1. These data demonstrated the distinct role of the lectin domain as the functional domain recognizing LOX-1 ligand. The conserved C-terminal residues of lectin-like domain are essential for binding oxLDL. Particularly, the basic amino acid pair is important for the binding.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3