Structural characterization of the late competence protein ComFB from Bacillus subtilis

Author:

Sysoeva Tatyana A.1,Bane Lukas B.1,Xiao Daphne Y.1,Bose Baundauna1,Chilton Scott S.1,Gaudet Rachelle1,Burton Briana M.1

Affiliation:

1. Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A.

Abstract

Many bacteria take up DNA from their environment as part of the process of natural transformation. DNA uptake allows microorganisms to gain genetic diversity and can lead to the spread of antibiotic resistance or virulence genes within a microbial population. Development of genetic competence (Com) in Bacillus subtilis is a highly regulated process that culminates in expression of several late competence genes and formation of the DNA uptake apparatus. The late competence operon comF encodes a small protein of unknown function, ComFB. To gain insight into the function of ComFB, we determined its 3D structure via X-ray crystallography. ComFB is a dimer and each subunit consists of four α-helices connected by short loops and one extended β-strand-like stretch. Each subunit contains one zinc-binding site formed by four cysteines, which are unusually spaced in the primary sequence. Using structure- and bioinformatics-guided substitutions we analyzed the inter-subunit interface of the ComFB dimer. Based on these analyses, we conclude that ComFB is an obligate dimer. We also characterized ComFB in vivo and found that this protein is produced in competent cells and is localized to the cytosol. Consistent with previous reports, we showed that deletion of ComFB does not affect DNA uptake function. Combining our results, we conclude that ComFB is unlikely to be a part of the DNA uptake machinery under tested conditions and instead may have a regulatory function.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3