Structural characterization of the products of hydroxyl-radical damage to leucine and their detection on proteins

Author:

FU Shan-Lin1,DEAN Roger T.1

Affiliation:

1. Heart Research Institute, 145 Missenden Road, Camperdown, NSW 2050, Australia

Abstract

We have previously reported the formation of valine hydroperoxides and aldehydes from hydroxyl-radical attack on free valine and protein molecules. We have also demonstrated that the major degradation products of valine hydroperoxides by several biochemical and cellular systems are the corresponding hydroxides, and therefore proposed that hydroxyvalines may serve as useful in vivo markers for studying protein oxidation. Here we have undertaken the structural elucidation of the oxidation products of leucine, another amino acid which is very susceptible to peroxidation. Hydroxyl-radical (HO•) attack on l-leucine in the presence of oxygen, followed by NaBH4 reduction, gave rise to five major oxidation products which have been isolated and identified. On the basis of chemical and spectroscopic evidence, the five products have been identified as (2S)-γ-hydroxyleucine, (2S,4S)-δ-hydroxyleucine, (2S,4R)-δ-hydroxyleucine, (2S,4R)-4-methylproline (trans-4-methyl-l-proline) and (2S,4S)-4-methylproline (cis-4-methyl-l-proline). The three hydroxyleucines have been confirmed to be the reduction products of the corresponding hydroperoxyleucines, while the two proline analogues are from reduction of their corresponding cyclic Schiff bases. By HPLC analysis using post-column o-phthaldialdehyde derivatization, we have detected hydroxyleucines in the hydrolysates of tripeptides and proteins which had been γ-radiolysed and treated with NaBH4. Furthermore, we demonstrate the occurrence of the hydroxyleucines on proteins in physiological and pathological samples. Hydroxyleucines, like hydroxyvalines, may provide usefulin vivo markers for studying protein oxidation. In the present study we also investigated the competition between leucine, valine and phenylalanine for HO•, and proposed a possible radical-transfer process in such free-radical reactions.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3