A monoclonal antibody to the phosphorylated form of phenylalanine hydroxylase. Definition of the phosphopeptide epitope

Author:

Smith S C1,McAdam W J1,Kemp B E1,Morgan F J1,Cotton R G1

Affiliation:

1. Olive Miller Protein Chemistry Laboratory, Royal Children's Hospital, Parkville, Victoria, Australia.

Abstract

Monoclonal antibody PH7 has specificity for the phosphorylated form of the human liver phenylalanine hydroxylase and negligible reactivity towards the dephosphorylated form of the native enzyme by enzyme-linked immunoassay. PH7 binds specifically to the phosphorylated form of the liver enzyme after SDS/polyacrylamide-gel electrophoresis and transfer to nitrocellulose. Competitive blocking assays have been applied in conjunction with reversed-phase h.p.l.c. of purified tryptic fragments of human liver phenylalanine hydroxylase to localize the epitope. The major immunoreactive tryptic peptide cross-reacting with PH7 had an amino acid analysis corresponding to the first 41 amino acids of the human liver phenylalanine hydroxylase sequence and included the serine residue that is thought to be the phosphorylation site. The monoclonal antibody recognized the phosphorylated form of the synthetic decapeptide corresponding to the local phosphorylation-site sequence Gly-Leu-Gly-Arg-Lys-Leu-Ser(P)-Asp-Phe-Gly, but not the dephosphodecapeptide. Thermolysin digestion of the peptide demonstrated the monoclonal antibody bound to the pentapeptide Leu-Ser(P)-Asp-Phe-Gly. Monoclonal antibody PH7 recognized the phosphodecapeptide at concentrations 10(3)-fold higher than with phenylalanine hydroxylase, compared with 10(4)-10(7)-fold higher for other phosphopeptides and phosphoproteins. The results demonstrate that monoclonal antibody PH7 has specificity for the phosphorylated form of phenylalanine hydroxylase at the phosphorylation site.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3