Affiliation:
1. Departments of Biochemistry and Molecular Biology, University of Bergen, N-5009 Bergen, Norway
2. Medical Genetics, University of Bergen, N-5009 Bergen, Norway
Abstract
The phosphorylation of human phenylalanine hydroxylase by cyclic AMP-dependent protein kinase was studied using recombinant enzyme expressed as a fusion protein in the pMAL system of Escherichia coli. Using the target sequence of the restriction protease enterokinase (Asp4-Lys) as the linker peptide, 100% full-length human phenylalanine hydroxylase was obtained on protease cleavage. The fusion protein and human phenylalanine hydroxylase were both phosphorylated at Ser-16 with a stoichiometry of 1 mol of Pi/mol of subunit. The rate of phosphorylation of human phenylalanine hydroxylase was inhibited about 40% by the cofactor tetrahydrobiopterin, and this inhibition was completely prevented by the simultaneous presence of L-phenylalanine (i.e. at turnover conditions). Phosphorylated enzyme revealed a 1.6-fold higher specific activity than the non-phosphorylated enzyme form, and it also required a lower concentration of L-Phe for substrate activation. Preincubation with L-Phe increased the specific activity of phenylalanine hydroxylase 2- to 4-fold, L-Phe acting with positive cooperativity. Thus, the basic catalytic and regulatory properties of recombinant human phenylalanine hydroxylase, as well as those observed for the enzyme as a fusion protein, are similar to those previously reported for the rat liver enzyme. When the target sequence of the restriction protease factor Xa (Ile-Glu-Gly-Arg) was used as the linker between maltose-binding protein and human phenylalanine hydroxylase, cleavage of the fusion protein gave a mixture of full-length hydroxylase and a truncated form of the enzyme lacking the 13 N-terminal residues. Interestingly, phosphorylation of the fusion protein, before exposure to factor Xa, almost completely protected against secondary cleavage by this restriction protease at Arg-13 of phenylalanine hydroxylase.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献