Interactions between organic anions, micelles and vesicles in model bile systems

Author:

VERKADE Henkjan J.1,de BRUIJN Marjan A. C.2,BRINK Menno A.2,TALSMA Herre3,VONK Roel J.1,KUIPERS Folkert1,GROEN Albert K.2

Affiliation:

1. Groningen Institute for Drug Studies, Department of Pediatrics, University Hospital Groningen, P.O. Box 30.001, 9700 RB Groningen

2. Department of Gastroenterology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands

3. Department of Pharmaceutics, University of Utrecht, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands

Abstract

Biliary lipid secretion probably involves both ‘micellization’ and ‘vesiculization’ of bile-canalicular membrane lipids. Several hydrophilic organic anions inhibit the secretion of lipids into the bile without altering bile salt secretion [Verkade, Vonk and Kuipers (1995) Hepatology 21, 1174–1189]. Hydrophobic organic anions do not interfere with biliary lipid secretion. We investigated whether the organic-anion-induced inhibition of biliary lipid secretion in vivo could be attributed to inhibition of micellization, by the application of in vitro models of micellization. Carboxyfluorescein was entrapped in a self-quenching concentration in small unilamellar vesicles (SUV) composed of cholesterol/egg phosphatidylcholine (molar ratios 0, 0.2 and 0.5). Certain organic anions clearly affected the bile-salt-induced release of fluorescence from these SUV, reflecting interference with micellization. However, the effects of hydrophilic and hydrophobic organic anions did not correspond with their effects on biliary lipid secretion in vivo, irrespective of the bile salt species used (taurocholate, taurodeoxycholate or tauroursodeoxycholate) and of the lipid composition of the SUV. Ultracentrifugation and dynamic light-scattering studies indicated that organic anions do interact with bile salt/phosphatidylcholine/cholesterol mixed micelles, but that they do not inhibit micellization, for example by competing with phosphatidylcholine and/or cholesterol for incorporation into mixed micelles. In conclusion, the present in vitro data indicate that the in vivo mechanism of organic-anion-induced inhibition of biliary lipid secretion is not mediated by inhibition of micellization.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3