Interplay between σ region 3.2 and secondary channel factors during promoter escape by bacterial RNA polymerase

Author:

Petushkov Ivan12,Esyunina Daria1,Mekler Vladimir3,Severinov Konstantin13,Pupov Danil1,Kulbachinskiy Andrey12

Affiliation:

1. Russian Academy of Sciences, Institute of Molecular Genetics, Moscow 123182, Russia

2. Molecular Biology Department, Biological Faculty, Moscow State University, Moscow 119991, Russia

3. Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, NJ 08854, U.S.A.

Abstract

In bacterial RNA polymerase (RNAP), conserved region 3.2 of the σ subunit was proposed to contribute to promoter escape by interacting with the 5′-end of nascent RNA, thus facilitating σ dissociation. RNAP activity during transcription initiation can also be modulated by protein factors that bind within the secondary channel and reach the enzyme active site. To monitor the kinetics of promoter escape in real time, we used a molecular beacon assay with fluorescently labeled σ70 subunit of Escherichia coli RNAP. We show that substitutions and deletions in σ region 3.2 decrease the rate of promoter escape and lead to accumulation of inactive complexes during transcription initiation. Secondary channel factors differentially regulate this process depending on the promoter and mutations in σ region 3.2. GreA generally increase the rate of promoter escape; DksA also stimulates promoter escape on certain templates, while GreB either stimulates or inhibits this process depending on the template. When observed, the stimulation of promoter escape correlates with the accumulation of stressed transcription complexes with scrunched DNA, while changes in the RNA 5′-end structure modulate promoter clearance. Thus, the initiation-to-elongation transition is controlled by a complex interplay between RNAP-binding protein factors and the growing RNA chain.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3