DksA-dependent regulation of RpoS contributes to Borrelia burgdorferi tick-borne transmission and mammalian infectivity

Author:

Boyle William K.ORCID,Richards Crystal L.ORCID,Dulebohn Daniel P.,Zalud Amanda K.ORCID,Shaw Jeff A.ORCID,Lovas SándorORCID,Gherardini Frank C.ORCID,Bourret Travis J.ORCID

Abstract

ABSTRACTThroughout its enzootic cycle, the Lyme disease spirochete Borreliella (Borrelia) burgdorferi, senses and responds to changes in its environment by using a small repertoire of transcription factors which coordinate the expression of genes required for infection of Ixodes ticks and various mammalian hosts. Among these transcription factors, the DnaK suppressor protein (DksA) plays a pivotal role in regulating gene expression in B. burgdorferi during periods of nutrient limitation and is required for mammalian infectivity. In many pathogenic bacteria, the gene regulatory activity of DksA along with the alarmone guanosine penta- and tetra-phosphate ((p)ppGpp) coordinates the stringent response to various environmental stresses including nutrient limitation. In this study, we sought to characterize the role of DksA in regulating the transcriptional activity of RNA polymerase and in the regulation of RpoS-dependent gene expression required for B. burgdorferi infectivity. Using in vitro transcription assays, we observed recombinant DksA inhibits RpoD-dependent transcription by B. burgdorferi RNA polymerase independent of ppGpp Additionally, we determined the pH-inducible expression of RpoS-dependent genes relies on DksA, but is independent of (p)ppGpp produced by Relbbu. Subsequent transcriptomic and western blot assays indicated DksA regulates the expression of BBD18, a protein previously implicated in the post-transcriptional regulation of RpoS. Moreover, we observed DksA was required for infection of mice following intraperitoneal inoculation or for transmission of B. burgdorferi by Ixodes scapularis nymphs. Together, these data suggest DksA plays a central role in coordinating transcriptional responses of B. burgdorferi required for infectivity through its interactions with RNA polymerase and post-transcriptional control of RpoS.Author SummaryLyme disease, caused by the spirochetal bacteria Borrelia burgdorferi, is the most common vector-borne illness in North America. The ability of B. burgdorferi to establish infection is predicated by its ability to coordinate the expression of virulence factors in response to diverse environmental stimuli encountered within Ixodes ticks and mammalian hosts. Previous studies have shown an essential role for the alternative sigma factor RpoS in regulating the expression of genes required for the successful transmission of B. burgdorferi by Ixodes ticks and infection of mammalian hosts. The DnaK suppressor protein (DksA) is a global gene regulator in B. burgdorferi that also contributes to the expression of RpoS-dependent genes. In this study, we determined DksA exerts its gene regulatory function through direct interactions with the B. burgdorferi RNA polymerase using in vitro transcription assays and controls the expression of RpoS-dependent genes required for mammalian infection by post-transcriptionally regulating cellular levels of RpoS. Our results demonstrate the utility of in vitro transcription assays to determine how gene regulatory proteins like DksA control gene expression in B. burgdorferi, and reveal a novel role for DksA in the infectious cycle of B. burgdorferi.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3