Mechanism of activation of SGK3 by growth factors via the Class 1 and Class 3 PI3Ks

Author:

Malik Nazma1,Macartney Thomas1,Hornberger Annika1,Anderson Karen E.2,Tovell Hannah1,Prescott Alan R.3,Alessi Dario R.1

Affiliation:

1. MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.

2. Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridgeshire CB22 3AT, U.K.

3. Light Microscope Facility, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.

Abstract

Derailment of the PI3K-AGC protein kinase signalling network contributes to many human diseases including cancer. Recent work has revealed that the poorly studied AGC kinase family member, SGK3, promotes resistance to cancer therapies that target the Class 1 PI3K pathway, by substituting for loss of Akt kinase activity. SGK3 is recruited and activated at endosomes, by virtue of its phox homology domain binding to PtdIns(3)P. Here, we demonstrate that endogenous SGK3 is rapidly activated by growth factors such as IGF1, through pathways involving both Class 1 and Class 3 PI3Ks. We provide evidence that IGF1 enhances endosomal PtdIns(3)P levels via a pathway involving the UV-RAG complex of hVPS34 Class 3 PI3K. Our data point towards IGF1-induced activation of Class 1 PI3K stimulating SGK3 through enhanced production of PtdIns(3)P resulting from the dephosphorylation of PtdIns(3,4,5)P3. Our findings are also consistent with activation of Class 1 PI3K promoting mTORC2 phosphorylation of SGK3 and with oncogenic Ras-activating SGK3 solely through the Class 1 PI3K pathway. Our results highlight the versatility of upstream pathways that activate SGK3 and help explain how SGK3 substitutes for Akt following inhibition of Class 1 PI3K/Akt pathways. They also illustrate robustness of SGK3 activity that can remain active and counteract physiological conditions or stresses where either Class 1 or Class 3 PI3K pathways are inhibited.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3