Evidence of mitochondrial dysfunction in fragile X-associated tremor/ataxia syndrome

Author:

Ross-Inta Catherine1,Omanska-Klusek Alicja1,Wong Sarah1,Barrow Cedrick1,Garcia-Arocena Dolores2,Iwahashi Christine2,Berry-Kravis Elizabeth3,Hagerman Randi J.45,Hagerman Paul J.25,Giulivi Cecilia1

Affiliation:

1. Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, U.S.A.

2. Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, U.S.A.

3. Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, University of Illinois at Chicago, IL 60612, U.S.A.

4. Department of Pediatrics, School of Medicine, University of California Davis, Davis, CA 95616, U.S.A.

5. M.I.N.D. Institute, School of Medicine, University of California Davis, Davis, CA 95616, U.S.A.

Abstract

FXTAS (fragile X-associated tremor/ataxia syndrome) is a late-onset neurodegenerative disorder that affects individuals who are carriers of premutation expansions (55–200 CGG repeats) in the 5′ untranslated region of the FMR1 (fragile X mental retardation 1) gene. The role of MD (mitochondrial dysfunction) in FXTAS was evaluated in fibroblasts and brain samples from premutation carriers with and without FXTAS symptoms, with a range of CGG repeats. This study resulted in several important conclusions: (i) decreased NAD- and FAD-linked oxygen uptake rates and uncoupling between electron transport and synthesis of ATP were observed in fibroblasts from premutation carriers; (ii) a lower expression of mitochondrial proteins preceded both in age and in CGG repeats the appearance of overt clinical involvement; (iii) the CGG repeat size required for altered mitochondrial protein expression was also smaller than that required to produce brain intranuclear inclusions from individuals with the premutation who died, suggesting that MD is an incipient pathological process occurring in individuals who do not display overt features of FXTAS; and (iv) on the basis of the CGG repeats, MD preceded the increase in oxidative/nitrative stress damage, indicating that the latter is a late event. MD in carriers of small CGG repeats, even when the allele size is not sufficient to produce FXTAS, may predispose them to other disorders (e.g. Parkinson's disease) that are likely to involve MD, and to environmental stressors, which may trigger the development of FXTAS symptoms. Detection of MD is of critical importance to the management of FXTAS, since it opens up additional treatment options for this disorder.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3