When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid

Author:

BAGNATI Marco1,PERUGINI Cristina1,CAU Cristiana1,BORDONE Roberta1,ALBANO Emanuele1,BELLOMO Giorgio

Affiliation:

1. Department of Medical Sciences, University of Piemonte Orientale ‘A. Avogadro’, Novara, Italy

Abstract

The inclusion of uric acid in the incubation medium during copper-induced low-density lipoprotein (LDL) oxidation exerted either an antioxidant or pro-oxidant effect. The pro-oxidant effect, as mirrored by an enhanced formation of conjugated dienes, lipid peroxides, thiobarbituric acid-reactive substances and increase in negative charge, occurred when uric acid was added late during the inhibitory or lag phase and during the subsequent extensive propagation phase of copper-stimulated LDL oxidation. The pro-oxidant effect of uric acid was specific for copper-induced LDL oxidation and required the presence of copper as either Cu(I) or Cu(II). In addition, it became much more evident when the copper to LDL molar ratio was below a threshold value of approx. 50. In native LDL, the shift between the antioxidant and the pro-oxidant activities was related to the availability of lipid hydroperoxides formed during the early phases of copper-promoted LDL oxidation. The artificial enrichment of isolated LDL with α-tocopherol delayed the onset of the pro-oxidant activity of uric acid and also decreased the rate of stimulated lipid peroxidation. However, previous depletion of α-tocopherol was not a prerequisite for unmasking the pro-oxidant activity of uric acid, since this became apparent even when α-tocopherol was still present in significant amounts (more than 50% of the original values) in LDL. These results suggest, irrespective of the levels of endogenous α-tocopherol, that uric acid may enhance LDL oxidation by reducing Cu(II) to Cu(I), thus making more Cu(I) available for subsequent radical decomposition of lipid peroxides and propagation reactions.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3