Affiliation:
1. Dipartimento di Medicina ed Oncologia Sperimentale, Università di Torino, Italy.
2. Depaament of Biochemistry and Molecular Biology, University College London, London, U.K.
3. Department of Biology and Biochemistry, Brunel University, Uxbridge, Middlesex, U.K.
Abstract
The constitutive and inducible cytosolic glutathione S-transferase (EC 2.5.1.18) subunit compositions of parenchymal cells (hepatocytes) and biliary epithelial cells (BEC) from rat liver have been quantitatively analysed using reverse-phase h.p.l.c. Hepatocytes, analysed in the absence of non-parenchymal cells, expressed constitutively the following subunits, in order of their concentration: 3, 4, 2, 1a, 1b, 8, 6 and 10. BEC express constitutively only four of the GST subunits expressed by hepatocytes and these are, in order of their concentration: subunits 2, 7, 4 and 3. Notable differences from hepatocytes are that BEC completely lack the Alpha-class subunits 1a and 1b that are major subunits in hepatocytes, Mu-class subunits make up a very low proportion of the total, and the Pi-class subunit 7 is a major subunit in BEC, whereas it is essentially absent from hepatocytes. For the first time, the effects of the inducing agents phenobarbitone (PB), beta-naphthoflavone (beta-NF) and ethoxyquin (EQ) have been characterized in a comprehensive and quantitative manner in both cell types. PB, beta-NF and EQ increased total GST protein in hepatocytes by approx. 2-fold, 3-fold and 4-fold respectively. Subunits significantly induced in hepatocytes were (in order of fold-induction): by PB, 1b > 8 > 3 > 2 > 4; by beta-NF, 1b > 8 > 2 > 3 > 4; and by EQ, 7 > 1b > 10 > 8 > 3 > 2 > 1a > 4. In BEC, neither PB nor beta-NF had significant effects on the total amount of GST protein, although PB did significantly induce subunit 3 at the expense of other subunits. EQ increased total GST protein nearly 5-fold in BEC, subunits 7 and 3 being induced dramatically above constitutive levels.
Subject
Cell Biology,Molecular Biology,Biochemistry