Membrane-binding properties of the Factor VIII C2 domain

Author:

Novakovic Valerie A.1,Cullinan David B.1,Wakabayashi Hironao2,Fay Philip J.2,Baleja James D.3,Gilbert Gary E.1

Affiliation:

1. Department of Medicine, Veterans Affairs Boston Healthcare System, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02132, U.S.A.

2. Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY 14642, U.S.A.

3. Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, U.S.A.

Abstract

Factor VIII functions as a cofactor for Factor IXa in a membrane-bound enzyme complex. Membrane binding accelerates the activity of the Factor VIIIa–Factor IXa complex approx. 100000-fold, and the major phospholipid-binding motif of Factor VIII is thought to be on the C2 domain. In the present study, we prepared an fVIII-C2 (Factor VIII C2 domain) construct from Escherichia coli, and confirmed its structural integrity through binding of three distinct monoclonal antibodies. Solution-phase assays, performed with flow cytometry and FRET (fluorescence resonance energy transfer), revealed that fVIII-C2 membrane affinity was approx. 40-fold lower than intact Factor VIII. In contrast with the similarly structured C2 domain of lactadherin, fVIII-C2 membrane binding was inhibited by physiological NaCl. fVIII-C2 binding was also not specific for phosphatidylserine over other negatively charged phospholipids, whereas a Factor VIII construct lacking the C2 domain retained phosphatidyl-L-serine specificity. fVIII-C2 slightly enhanced the cleavage of Factor X by Factor IXa, but did not compete with Factor VIII for membrane-binding sites or inhibit the Factor Xase complex. Our results indicate that the C2 domain in isolation does not recapitulate the characteristic membrane binding of Factor VIII, emphasizing that its role is co-operative with other domains of the intact Factor VIII molecule.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3