Affiliation:
1. Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 3P6
Abstract
The ‘tails’ of histones H3 and H4 were removed by light in situ trypsin digestion of the nuclei. The alterations in the higher-order folding of chromatin resulting from this treatment were monitored by ethidium bromide titration. We found that DNA-intercalation of ethidium bromide under these conditions exhibited a complex concentration effect that was dependent on the extent of chromatin folding. This most likely reflects the structural transitions of chromatin during its folding as a result of the changes in the nucleosome linker twist [Woodcock, Grigoryev, Horowitz and Whitaker (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 9021–9025]. These results strongly suggest that the H3 and H4 terminal domains play a very important role in chromatin folding. We discuss the molecular basis of this phenomenon and propose a novel generalized model for the higher-order folding of chromatin.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献