Effects of insulin on the regulation of branched-chain α-keto acid dehydrogenase E1α subunit gene expression

Author:

COSTEAS Paul A1,CHINSKY Jeffrey M.12

Affiliation:

1. Division of Human Genetics, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201

2. Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, U.S.A.

Abstract

Alterations in dietary intake, especially of protein, may produce changes in the hepatic levels of the branched-chain α-keto acid dehydrogenase (BCKAD) complex. The possible role of insulin in the regulation of these observed changes in hepatic capacity for BCKAD expression was therefore examined. Steady-state RNA levels encoding three of the subunits, E1α, E1β and E2, increased by 2–4-fold in the livers of mice starved for 3 days, a known hypoinsulinaemic state. In contrast, the levels of E1β and E2, but not E1α, RNA were decreased when mice were fed 0% protein diets compared with the levels observed in mice fed standard (23%) or higher protein isocaloric diets. BCKAD subunit protein levels under these conditions changed co-ordinately even though the changes in RNA were not co-ordinate. The effects of hormonal changes that might be associated with these dietary changes were examined, using the rodent hepatoma cell line H4IIEC3. In these cells, the levels of E1α protein and mRNA were significantly depressed in the presence of insulin. In contrast, the levels of E1β and E2 RNAs were not decreased by insulin. The half-lives of the E1α and E2 RNAs were determined to be quite long, from 13 to 18 h, with insulin having no dramatic overall effect on the half-lives determined over 24 h. Therefore, it is likely that insulin directly affects the transcription of the E1α gene rather than RNA stability in exerting its negative regulatory effect. This effect is specific to the E1α subunit. The differences in BCKAD subunit RNA levels observed under various nutritional and developmental conditions may therefore be the result of the differential effects of insulin and other hormones on the multiple regulatory mechanisms modulating BCKAD subunit expression.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3