β 3-adrenergic receptors are responsible for the adrenergic inhibition of insulin-stimulated glucose transport in rat adipocytes

Author:

Carpéné C1,Chalaux E1,Lizarbe M2,Estrada A2,Mora C2,Palacin M2,Zorzano A2,Lafontan M1,Testar X2

Affiliation:

1. Institut National de la Santé et de la Recherche Médicale (I.N.S.E.R.M. U 317), Institut Louis Bugnard, Faculté de Médecine, C.H.U. Rangueil, 31054 Toulouse Cedex, France

2. Deparament de Bioquimica i Fisiologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain

Abstract

The inhibition of insulin-stimulated glucose transport by isoprenaline, a mixed beta-adrenergic-receptor (AR) agonist, is well documented in rat adipocytes. Since it has been described that rat adipocytes possess not only beta 1- and beta 2- but also beta 3-ARs, the influence of various subtype-selective beta-AR agonists and antagonists on 2-deoxyglucose (2-DG) transport was assessed in order to characterize the beta-AR subtype involved in the adrenergic counter-regulation of the insulin effect. The stimulation of 2-DG transport by insulin was counteracted, in a dose-dependent manner, by all the beta-AR agonists tested, and the magnitude of the inhibition followed the rank order: BRL 37344 > isoprenaline = noradrenaline >> dobutamine = procaterol. The same rank order of potency was obtained for lipolysis activation. This is not in accordance with the pharmacological definition of a beta 1- or a beta 2-adrenergic effect, but agrees with the pharmacological pattern of a beta 3-adrenergic effect. The inhibitory effect of the beta 3-agonist BRL 37344 on insulin-stimulated 2-DG transport was not reversed by either the selective beta 1-antagonist ICI 89406 or the beta 2-antagonist ICI 118551. In addition, neither of these beta-antagonists was able to block the isoprenaline and noradrenaline effects, supporting major beta 3-adrenoceptor-subtype involvement in the adrenergic inhibition of insulin-stimulated 2-DG transport. Like isoprenaline, BRL 37344 inhibited (60% inhibition) insulin-stimulated glucose transport only when adenosine deaminase was present in the assay. Furthermore, the maximal inhibitory effects of isoprenaline and BRL 37344 were not additive, and were both dependent on albumin concentration in the incubation medium: they increased when the albumin concentration decreased in the medium from 3.5 to 1%. To conclude, the similarities between isoprenaline and BRL 37344 action on insulin-stimulated 2-DG transport, the poor efficacy of the beta 1-/beta 2-agonists and the lack of effect of selective beta 1- and beta 2-antagonists are compelling arguments to support the important role of beta 3-adrenoceptors in the adrenergic inhibition of glucose transport in rat adipocytes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3