Modelling the evolution of novelty: a review

Author:

Colizzi Enrico Sandro1ORCID,Hogeweg Paulien2,Vroomans Renske M.A.1

Affiliation:

1. 1Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, CB2 1LR, Cambridge, U.K.

2. 2Theoretical Biology and Bioinformatics, Universiteit Utrecht, Padualaan 8, 3584 CH, Utrecht, Netherlands

Abstract

Abstract Evolution has been an inventive process since its inception, about 4 billion years ago. It has generated an astounding diversity of novel mechanisms and structures for adaptation to the environment, for competition and cooperation, and for organisation of the internal and external dynamics of the organism. How does this novelty come about? Evolution builds with the tools available, and on top of what it has already built – therefore, much novelty consists in repurposing old functions in a different context. In the process, the tools themselves evolve, allowing yet more novelty to arise. Despite evolutionary novelty being the most striking observable of evolution, it is not accounted for in classical evolutionary theory. Nevertheless, mathematical and computational models that illustrate mechanisms of evolutionary innovation have been developed. In the present review, we present and compare several examples of computational evo–devo models that capture two aspects of novelty: ‘between-level novelty’ and ‘constructive novelty.’ Novelty can evolve between predefined levels of organisation to dynamically transcode biological information across these levels – as occurs during development. Constructive novelty instead generates a level of biological organisation by exploiting the lower level as an informational scaffold to open a new space of possibilities – an example being the evolution of multicellularity. We propose that the field of computational evo–devo is well-poised to reveal many more exciting mechanisms for the evolution of novelty. A broader theory of evolutionary novelty may well be attainable in the near future.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3