Abstract
AbstractThe endosymbiosis of an alpha-proteobacterium that gave rise to mitochondria was one of the key events in eukaryogenesis. One striking outcome of eukaryogenesis was a much more complex cell with a large genome. Despite the existence of many alternative hypotheses for this and other patterns potentially related to endosymbiosis, a constructive evolutionary model in which these hypotheses can be studied is still lacking. Here, we present a theoretical approach in which we focus on the consequences rather than the causes of mitochondrial endosymbiosis. Using a constructive evolutionary model of cell-cycle regulation, we find that genome expansion and genome size asymmetry arise from emergent host–symbiont cell-cycle coordination. We also find that holobionts with large host and small symbiont genomes perform best on long timescales and mimic the outcome of eukaryogenesis. By designing and studying a constructive evolutionary model of obligate endosymbiosis, we uncovered some of the forces that may drive the patterns observed in nature. Our results provide a theoretical foundation for patterns related to mitochondrial endosymbiosis, such as genome size asymmetry, and reveal evolutionary outcomes that have not been considered so far, such as cell-cycle coordination without direct communication.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献