Substrate-specificity of glutamine transporters in membrane vesicles from rat liver and skeletal muscle investigated using amino acid analogues

Author:

Low S Y1,Taylor P M1,Ahmed A1,Pogson C I2,Rennie M J1

Affiliation:

1. Department of Anatomy and Physiology, University of Dundee, DD1 4HN, Scotland, U.K.

2. Wellcome Research Laboratories, Langley Court, Beckenham, Kent BR3 3BS, U.K.

Abstract

We investigated the effects of glutamine and histidine analogues on glutamine transport processes in membrane vesicles prepared from rat liver (sinusoidal membrane) and skeletal muscle (sarcolemma). L-[14C]Glutamine is transported in these membranes predominantly by Systems N/Nm (liver and muscle respectively), and to a lesser extent by Systems A and L (e.g. about 60, 20 and 20% of total flux respectively via Systems N, A and L at 0.05 mM-glutamine in liver membrane vesicles). The glutamine anti-metabolites 6-diazo-5-oxo-L-norleucine and acivicin were relatively poor inhibitors of glutamine uptake into liver membrane vesicles (less than 25% inhibition at 20-fold excess) and appeared primarily to inhibit System A activity (i.e. N-methylaminoisobutyric acid-inhibitable glutamine uptake). In similar experiments azaserine (also a glutamine anti-metabolite) inhibited approx. 50% of glutamine uptake, apparently by inhibition of System A and also of System L (i.e. 2-amino-2-carboxybicyclo[2,2,1]heptane-inhibitable glutamine uptake). Glutamate gamma-hydroxamate, aspartate beta-hydroxamate, histidine and N'-methylhistidine were all strong inhibitors of glutamine uptake into liver membrane vesicles (greater than 65% inhibition at 20-fold excess), but neither homoglutamine nor N'-methylhistidine produced inhibition. L-Glutamate-gamma-hydroxamate was shown to be a competitive inhibitor of glutamine transport via System N (Ki approximately 0.6 mM). Glutamine uptake in sarcolemmal vesicles showed a similar general pattern of inhibition as in liver membrane vesicles. The results highlight limits on the substrate tolerance of System N; we suggest that the presence of both an L-alpha-amino acid group and a nitrogen group with a delocalized lone-pair of electrons (amide or pyrrole type), separated by a specific intramolecular distance (C2-C4 chain equivalent), is important for substrate recognition by this transporter.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3