Structural requirements for the collagenase and elastase activity of cathepsin K and its selective inhibition by an exosite inhibitor

Author:

Sharma Vidhu1,Panwar Preety1,O’Donoghue Anthony J.2,Cui Haoran1,Guido Rafael V. C.3,Craik Charles S.2,Brömme Dieter1

Affiliation:

1. Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada V6T1Z3

2. Department of Pharmaceutical Chemistry, Program in Chemistry and Chemical Biology and Graduate Group in Biophysics, University of California at San Francisco, San Francisco, CA 94143, U.S.A.

3. Laboratório de Química Medicinal e Computacional, Centro de Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos-SP 13563-120, Brazil

Abstract

Human cathepsin K (CatK) is a major drug target for the treatment of osteoporosis. Although its collagenase activity is unique, CatK also exerts a potent elastolytic activity that is shared with human cathepsins V and S. Other members of the cysteine cathepsin family, which are structurally similar, do not exhibit significant collagen and elastin degrading activities. This raises the question of the presence of specific structural elements, exosites, that are required for these activities. CatK has two exosites that control its collagenolytic and elastolytic activity. Modifications of exosites 1 and 2 block the elastase activity of CatK, whereas only exosite-1 alterations prevent collagenolysis. Neither exosite affects the catalytic activity, protease stability, subsite specificity of CatK or the degradation of other biological substrates by this protease. A low-molecular-mass inhibitor that docks into exosite-1 inhibits the elastase and collagenase activity of CatK without interfering with the degradation of other protein substrates. The identification of CatK exosites opens up the prospect of designing highly potent inhibitors that selectively inhibit the degradation of therapeutically relevant substrates by this multifunctional protease.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3