Lysophosphatidic acid-induced Ca2+ mobilization in human A431 cells: structure-activity analysis

Author:

Jalink K1,Hengeveld T1,Mulder S1,Postma F R1,Simon M F2,Chap H2,van der Marel G A3,van Boom J H3,van Blitterswijk W J1,Moolenaar W H1

Affiliation:

1. Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands

2. INSERM Unite 326, Hôpital Purpan, Toulouse, France

3. Gorlaeus Laboratories, P.O. Box 9502, 2300 AA Leiden, The Netherlands

Abstract

Lysophosphatidic acid (LPA; 1-acyl-sn-glycero-3-phosphate) is a platelet-derived lipid mediator that activates its own G-protein-coupled receptor to trigger phospholipase C-mediated Ca2+ mobilization and other effector pathways in numerous cell types. In this study we have examined the structural features of LPA that are important for activation of the Ca(2+)-mobilizing receptor in human A431 carcinoma cells, which show an EC50 for oleoyl-LPA as low as 0.2 nM. When the acyl chain at the sn-1 position is altered, the rank order of potency is oleoyl-LPA > arachidonoyl-LPA > linolenoyl-LPA > linoleoyl-LPA > stearoyl-LPA = palmitoyl-LPA > myristoyl-LPA. The shorter-chain species, lauroyl- and decanoyl-LPA, show little or no activity. Ether-linked LPA (1-O-hexadecyl-sn-glycero-3-phosphate) is somewhat less potent than the corresponding ester-linked LPA; its stereoisomer is about equally active. Deletion of the glycerol backbone causes a 1000-fold decrease in potency. Replacement of the phosphate group in palmitoyl-LPA by a hydrogen- or methyl-phosphonate moiety results in complete loss of activity. A phosphonate analogue with a methylene group replacing the oxygen at sn-3 has strongly decreased activity. All three phosphonate analogues induce cell lysis at doses > 15 microM. Similarly, the methyl and ethyl esters of palmitoyl-LPA are virtually inactive and become cytotoxic at micromolar doses. None of the LPA analogues tested has antagonist activity. Sphingosine 1-phosphate, a putative messenger with some structural similarities to LPA, elicits a transient rise in intracellular [Ca2+] only at micromolar doses; however, cross-desensitization experiments indicate that sphingosine 1-phosphate does not act through the LPA receptor. The results indicate that, although many features of the LPA structure are important for optimal activity, the phosphate group is most critical, suggesting that this moiety is directly involved in receptor activation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3