Mode of action of DNA-competitive small molecule inhibitors of tyrosyl DNA phosphodiesterase 2

Author:

Hornyak Peter12,Askwith Trevor3,Walker Sarah3,Komulainen Emilia1,Paradowski Michael3,Pennicott Lewis E.3,Bartlett Edward J.1,Brissett Nigel C.1,Raoof Ali4,Watson Mandy4,Jordan Allan M.4,Ogilvie Donald J.4,Ward Simon E.3,Atack John R.3,Pearl Laurence H.2,Caldecott Keith W.1,Oliver Antony W.2

Affiliation:

1. Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, U.K.

2. Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, U.K.

3. Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer BN1 9QJ, U.K.

4. Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, U.K.

Abstract

Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a 5′-tyrosyl DNA phosphodiesterase important for the repair of DNA adducts generated by non-productive (abortive) activity of topoisomerase II (TOP2). TDP2 facilitates therapeutic resistance to topoisomerase poisons, which are widely used in the treatment of a range of cancer types. Consequently, TDP2 is an interesting target for the development of small molecule inhibitors that could restore sensitivity to topoisomerase-directed therapies. Previous studies identified a class of deazaflavin-based molecules that showed inhibitory activity against TDP2 at therapeutically useful concentrations, but their mode of action was uncertain. We have confirmed that the deazaflavin series inhibits TDP2 enzyme activity in a fluorescence-based assay, suitable for high-throughput screen (HTS)-screening. We have gone on to determine crystal structures of these compounds bound to a ‘humanized’ form of murine TDP2. The structures reveal their novel mode of action as competitive ligands for the binding site of an incoming DNA substrate, and point the way to generating novel and potent inhibitors of TDP2.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3