Affiliation:
1. Department of Basic Medical Sciences, St. Georges, University of London, Cranmer Terrace, London SW17 0RE, U.K.
Abstract
We have previously reported that protein lipidation in the form of palmitoylation and farnesylation is critical for the production of Aβ (amyloid β-peptide), the dimerization of β-secretase and its trafficking into cholesterol-rich microdomains. As statins influence these lipid modifications in addition to their effects on cholesterol biosynthesis, we have investigated the effects of lovastatin and SIMVA (simvastatin) at a range of concentrations chosen to distinguish different cellular effects on Aβ production and β-secretase structure and its localization in bHEK cells [HEK-293 cells (human embryonic kidney cells) transfected with the Asp-2 gene plus a polyhistidine coding tag] cells. We have compared the changes brought about by statins with those brought about by the palmitoylation inhibitor cerulenin and the farnesyltransferase inhibitor CVFM (Cys-Val-Phe-Met). The statin-mediated reduction in Aβ production correlated with an inhibition of β-secretase dimerization into its more active form at all concentrations of statin investigated. These effects were reversed by the administration of mevalonate, showing that these effects were mediated via 3-hydroxy-3-methylglutaryl-CoA-dependent pathways. At low (1 μM) statin concentrations, reduction in Aβ production and inhibition of β-secretase dimerization were mediated by inhibition of isoprenoid synthesis. At high (>10 μM) concentrations of statins, inhibition of β-secretase palmitoylation occurred, which we demonstrated to be regulated by intracellular cholesterol levels. There was also a concomitant concentration-dependent change in β-secretase subcellular trafficking. Significantly, Aβ release from cells was markedly higher at 50 μM SIMVA than at 1 μM, whereas these concentrations resulted in similar reductions in total Aβ production, suggesting that low-dose statins may be more beneficial than high doses for the therapeutic treatment of Alzheimer's disease.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献