Phosphorylation of PEA-15 switches its binding specificity from ERK/MAPK to FADD

Author:

Renganathan Hemamalini1,Vaidyanathan Hema1,Knapinska Anna1,Ramos Joe W.2

Affiliation:

1. Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, U.S.A.

2. Cancer Research Center of Hawai'i, University of Hawai'i at Manoa, 1236 Lauhala Street, Honolulu, HI 96813, U.S.A.

Abstract

Cell signalling pathways that regulate proliferation and those that regulate programmed cell death (apoptosis) are co-ordinated. The proteins and mechanisms that mediate the integration of these pathways are not yet fully described. The phosphoprotein PEA-15 (phosphoprotein enriched in astrocytes) can regulate both the ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) pathway and the death receptor-initiated apoptosis pathway. This is the result of PEA-15 binding to the ERK/MAPK or the proapoptotic protein FADD (Fas-activated death domain protein) respectively. The mechanism by which binding of PEA-15 to these proteins is controlled has not been elucidated. PEA-15 is a phosphoprotein containing a Ser-104 phosphorylated by protein kinase C and a Ser-116 phosphorylated by CamKII (calcium/calmodulin-dependent protein kinase II) or AKT. Phosphorylation of Ser-104 is implicated in the regulation of glucose metabolism, while phosphorylation at Ser-116 is required for PEA-15 recruitment to the DISC (death-initiation signalling complex). Moreover, PEA-15 must be phosphorylated at Ser-116 to inhibit apoptosis. In the present study, we report that phosphorylation at Ser-104 blocks ERK binding to PEA-15 in vitro and in vivo, whereas phosphorylation at Ser-116 promotes its binding to FADD. We further characterize phospho-epitope-binding antibodies to these sites. We report that phosphorylation does not influence the distribution of PEA-15 between the cytoplasm and nucleus of the cell since all phosphorylated states are found predominantly in the cytoplasm. We propose that phosphorylation of PEA-15 acts as the switch that controls whether PEA-15 influences proliferation or apoptosis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3