Proteomics analysis identifies PEA-15 as an endosomal phosphoprotein that regulates α5β1 integrin endocytosis

Author:

Caliva Maisel J.,Yang Won Seok,Young-Robbins Shirley,Zhou Ming,Yoon Hana,Matter Michelle L.,Grimes Mark L.,Conrads Thomas,Ramos Joe William

Abstract

AbstractEndosomal trafficking of cell surface receptors is essential to their function. Integrins are transmembrane receptors that integrate adhesion to the extracellular matrix with engagement of the cytoskeleton. Ligated integrins mediate diverse signals that regulate matrix assembly, cell survival, cell morphology, and cell motility. Endosomal trafficking of integrins modulates these signals and contributes to cell motility and is required for cancer cell invasion. The phosphoprotein PEA-15 modulates integrin activation and ERK MAP Kinase signaling. To elucidate novel PEA-15 functions we utilized an unbiased proteomics approach. We identified several binding partners for PEA-15 in the endosome including clathrin and AP-2 as well as integrin β1 and other focal adhesion complex proteins. We confirmed these interactions using proximity ligation analysis, immunofluorescence imaging, pull-down and co-immunoprecipitation. We further found that PEA-15 is enriched in endosomes and was required for efficient endosomal internalization of α5β1 integrin and cellular migration. Importantly, PEA-15 promotion of migration was dependent on PEA-15 phosphorylation at serines 104 and 116. These data support a novel endosomal role for PEA-15 in control of endosomal trafficking of integrins through an association with the β1 integrin and clathrin complexes, and thereby regulation of cell motility.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrin receptor trafficking in health and disease;Progress in Molecular Biology and Translational Science;2023

2. Podocyte Endocytosis in Regulating the Glomerular Filtration Barrier;Frontiers in Medicine;2022-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3