Structure and regulation of the mDot1 gene, a mouse histone H3 methyltransferase

Author:

ZHANG Wenzheng1,HAYASHIZAKI Yoshihide2,KONE Bruce C.1

Affiliation:

1. Division of Renal Diseases and Hypertension, Department of Internal Medicine, The University of Texas Medical School at Houston, 6431 Fannin, MSB 4.148, Houston, TX 77030, U.S.A.

2. Laboratory for Genome Exploration Research Group, The Institute of Physical and Chemical Research (RIKEN) Genomic Sciences Center, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan

Abstract

Recently, a new class of histone methyltransferases that plays an indirect role in chromatin silencing by targeting a conserved lysine residue in the nucleosome core was described, namely the Dot1 (disruptor of telomeric silencing) family [Feng, Wang, Ng, Erdjument-Bromage, Tempst, Struhl and Zhang (2002) Curr. Biol. 12, 1052–1058; van Leeuwen, Gafken and Gottschling (2002) Cell (Cambridge, Mass.) 109, 745–756; Ng, Feng, Wang, Erdjument-Bromage, Tempst, Zhang and Struhl (2002) Genes Dev. 16, 1518–1527]. In the present study, we report the isolation, genomic organization and in vivo expression of a mouse Dot1 homologue (mDot1). Expressed sequence tag analysis identified five mDot1 mRNAs (mDot1a–mDot1e) derived from alternative splicing. mDot1a and mDot1b encode 1540 and 1114 amino acids respectively, whereas mDot1c–mDot1e are incomplete at the 5´-end. mDot1a is closest to its human counterpart (hDot1L), sharing 84% amino acid identity. mDot1b is truncated at its N- and C-termini and contains an internal deletion. The five mDot1 isoforms are encoded by 28 exons on chromosome 10qC1, with exons 24 and 28 further divided into two and four sections respectively. Alternative splicing occurs in exons 3, 4, 12, 24, 27 and 28. Northern-blot analysis with probes corresponding to the methyltransferase domain or the mDot1a-coding region detected 7.6 and 9.5 kb transcripts in multiple tissues, but only the 7.6 kb transcript was evident in mIMCD3-collecting duct cells. Transfection of mDot1a–EGFP constructs (where EGFP stands for enhanced green fluorescent protein) into human embryonic kidney (HEK)-293T or mIMCD3 cells increased the methylation of H3-K79 but not H3-K4, -K9 or -K36. Furthermore, DMSO induced mDot1 gene expression and methylation specifically at H3-K79 in mIMCD3 cells in a time- and dose-dependent manner. Collectively, these results add new members to the Dot1 family and show that mDot1 is involved in a DMSO-mediated signal-transduction pathway in collecting duct cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3