Deletion of the prorenin receptor in the ureteric bud in mice inhibits Dot1/H3K79 pathway

Author:

Song Renfang,Yosypiv Ihor V.

Abstract

Abstract Background The prorenin receptor (PRR) plays a critical role in ureteric bud (UB) branching morphogenesis. DOT1 Like (DOT1L), a histone methyltransferase specific for Histone 3 lysine 79 (H3K79), is important for differentiation of the UB-derived renal collecting duct cells. In this study, we tested whether DOT1L/H3 dimethyl K79 (H3m2K79) are regulated by PRR deletion in the UB and UB-derived collecting ducts in the embryonic mouse kidneys. Methods Mutant Hoxb7Cre+/PRRflox/flox (PRRUB-/-) and control PRRUB+/+, mice were studied on embryonic (E) day E17.5. DOT1L mRNA and protein expression in the kidney was examined by real-time qRT-PCR and immunohistochemistry, respectively. H3m2K79 protein expression was determined by immunohistochemistry and Western blot analysis. Results DOT1L mRNA levels were decreased in mutant compared to control mice (0.68 ± 0.06 vs. 1.0 ± 0.01, p < 0.01). DOT1L and H3m2K79 immunostaining was reduced in the mutant vs. control kidneys (Dot1: 0.62 ± 0.03 vs. 1.0 ± 0.01, p < 0.05; H3m2K79: 0.64 ± 0.04 vs.1.1 ± 0.01. p < 0.05.). Western blot analysis revealed decreased H3m2K79 protein levels in mutant compared to control kidneys (1.0 ± 0.06 vs. 1.5 ± 0.02, p < 0.05). Conclusion Targeted deletion of the PRR in the UB and UB-derived collecting ducts results in reduced DOT1L gene/protein and H3m2K79 protein expression in the embryonic mouse metanephroi in vivo. Impact The role of histone methylation in mediating the effect of the prorenin receptor on the ureteric bud branching (UB) morphogenesis and urine acidification during kidney development is unknown. We demonstrate that histone H3 lysine (K) 79 dimethylation by methyltransferase Dot1 is reduced in the embryonic kidney of mice that lack the prorenin receptor in the UB lineage.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3