The stimulatory effects of carbon tetrachloride and other halogenoalkanes on peroxidative reactions in rat liver fractions in vitro. General features of the systems used

Author:

Slater T. F.1,Sawyer B. C.1

Affiliation:

1. Department of Biochemical Pathology, University College Hospital Medical School, London W.C.1, U.K.

Abstract

1. The general features of the reaction by which carbon tetrachloride stimulates lipid peroxidation have been elucidated in rat liver microsomal suspensions and in mixtures of microsomes plus cell sap. The production of lipid peroxides has been correlated with malonaldehyde production in the systems used. 2. The stimulation of malonaldehyde production by carbon tetrachloride requires a source of reduced NADP+ and is dependent on the extent of the endogenous peroxidation of the microsomal membranes: if extensive endogenous peroxidation occurs during incubation then no stimulation by carbon tetrachloride is apparent. 3. The stimulation of malonaldehyde production by carbon tetrachloride has been shown to be proportional to the square root of the carbon tetrachloride concentration in the incubation mixture. It is concluded that the stimulation of malonaldehyde production by carbon tetrachloride results from an initiation process that is itself dependent on the homolytic dissociation of carbon tetrachloride to free-radical products. 4. The increased production of malonaldehyde due to carbon tetrachloride is accompanied by a decreased activity of glucose 6-phosphatase in rat liver microsomal suspensions. 5. The relative activities of bromotrichloromethane, fluorotrichloromethane and chloroform have been evaluated in comparison with the effects of carbon tetrachloride in increasing malonaldehyde production and in decreasing glucose 6-phosphatase activity. Bromotrichloromethane was more effective, and fluorotrichloromethane and chloroform were less effective, than carbon tetrachloride in producing these two effects. It is concluded that homolytic bond fission of the halogenomethanes is a requisite for the occurrence of the two effects observed in the endoplasmic reticulum.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3