Macromolecular organization of saliva: identification of ‘insoluble’ MUC5B assemblies and non-mucin proteins in the gel phase

Author:

WICKSTRÖM Claes12,CHRISTERSSON Cecilia2,DAVIES Julia R.12,CARLSTEDT Ingemar1

Affiliation:

1. Mucosal Biology Group, Department of Cell and Molecular Biology, Section for Molecular Pathogenesis, Lund University, P. O. Box 94, S-22100 Lund, Sweden

2. Faculty of Odontology, Malmö University, Malmö, Sweden

Abstract

Stimulated human submandibular/sublingual (HSMSL) and whole saliva were separated into sol and gel phases and mucins were isolated by density-gradient centrifugation in CsCl/4M guanidinium chloride. MUC5B and MUC7 were identified using anti-peptide antisera raised against sequences within the MUC5B and MUC7 apoproteins respectively. MUC7 was found mainly in the sol phase of both HSMSL and whole saliva, but some MUC7 was consistently present in the gel phase, suggesting that this mucin may interact with the salivary gel matrix. In HSMSL saliva, MUC5B was found in the gel phase; however, most of the material was ‘insoluble’in guanidinium chloride and was only brought into solution by reduction. In whole saliva, the MUC5B mucin was present both in the sol and gel phases although some material was again ‘insoluble’. Rate-zonal centrifugation of whole saliva showed that MUC5B mucins in the sol phase were smaller than those in the gel phase, suggesting differences in oligomerization and/or degradation. Antibodies against IgA, secretory component, lysozyme and lactoferrin were used to study the distribution of non-gel-forming proteins in the different phases of saliva. The majority of these proteins was found in the sol phase of both HSMSL and whole saliva. However, a significant fraction was present in the gel phase of whole saliva, suggesting a post-secretory interaction with the salivary gel matrix. A monoclonal antibody against a parotid salivary agglutinin was used to show that this protein is present mainly in the gel phase of both whole saliva and parotid secretion.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3