Secondary structure analysis of the putative membrane-associated domains of the inward rectifier K+ channel ROMK1

Author:

BRAZIER Stephen P.1,RAMESH Bala.1,HARIS Parvez I.2,LEE David C.3,SRAI Surjit K. S.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Royal Free Hospital School of Medicine, Rowland Hill Street, Hampstead, London NW3 2PF, U.K.

2. Department of Biological Sciences, De Montfort University, Leicester LE1 9BH, U.K.

3. Department of Spectral Analysis, SmithKline Beecham, New Frontiers Science Park, Third Avenue, Harlow, U.K.

Abstract

The inward rectifier K+ channels contain two putative membrane-spanning domains per subunit (M1, M2) and a ‘pore ’ (P) region, which is similar to the H5 domain of voltage-gated K+ channels. Here we have used Fourier transform infrared (FTIR) and CD spectroscopy to analyse the secondary structures of synthetic peptides corresponding to the M1, M2 and P regions of ROMK1 in aqueous solution, in organic solvents and in phospholipid membranes. A previous CD study was unable to provide any structural data on a similar P peptide [Ben-Efraim and Shai (1997) Biophys. J. 72, 85–96]. However, our FTIR and CD spectroscopic analyses indicate that this peptide adopts an α-helical structure when reconstituted into dimyristoyl phosphatidylcholine vesicles and lysophosphatidyl choline (LPC) micelles as well as in trifluoroethanol (TFE) solvent. This result is in good agreement with a previous study on a peptide corresponding to the pore domain of a voltage-gated K+ channel [Haris, Ramesh, Sansom, Kerr, Srai and Chapman (1994) Protein Eng. 7, 255–262]. FTIR spectra of the M1 peptide in LPC micelles displayed a strong absorbance characteristic of an intermolecular β-sheet structure, suggesting aggregation of the M1 peptide. Sucrose gradient centrifugation was used to separate aggregated peptide from peptide incorporated into micelles in an unaggregated manner; subsequent analysis by FTIR suggested that the M1 peptide adopted an α-helical structure when incorporated into phospholipid membranes. FTIR and CD spectra of the M2 peptide in phospholipids and high concentrations of TFE suggest that this peptide adopts an α-helical structure. The structural data obtained in these experiments have been used to propose a model for the structure of the membrane-associated core (M1-P-M2) of the inward rectifier K+ channel protein.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3