Purification and functional characterization of a low-molecular-mass Ca2+,Mg2+- and Ca2+-ATPase modulator protein from rat brain cytosol

Author:

BHATTACHARYYA Dipankar1,SEN C. Parimal1

Affiliation:

1. Department of Chemistry, Bose Institute, 93/1, A.P.C. Road, Calcutta 700 009, India

Abstract

A low-molecular-mass modulator protein having a molecular mass of about 12 kDa has been purified from rat brain cytosol following gel filtration and FPLC/Mono Q anion-exchange chromatographic separation. A number of protein fractions were obtained from an FPLC column when eluted with a 0.1 M NaCl hold gradient. One fraction (peak no. 5) was found to stimulate Ca2+,Mg2+-ATPase but inhibit Ca2+-ATPase isolated from goat spermatozoa. The S50 (concentration producing 50% stimulation) and I50 were found to be in the nanomolar range. The modulator seems to bind to Ca2+, Mg2+- or Ca2+-ATPase at a site distal from the ATP binding site. The binding to both the ATPases is reversible and non-competitive in nature. The inhibitory activity is found to depend significantly on -SH or -NH2 group(s) of the modulator, whereas no appreciable dependency of the stimulatory effect was apparent. The study indicates that the modulator is not a glycoprotein. CD analysis suggests that the protein exists as an unordered secondary structure. An immuno-cross-reactivity study with specific antibody and inhibition by thapsigargin suggests that the Ca2+,Mg2+- and Ca2+-ATPases from goat testes microsomal membranes are two isoforms of the sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase (SERCA) family. The modulator does not contain any Trp molecules, as evident from Trp fluorescence analysis. Amino acid analysis shows that glycine, serine, derivatives of tyrosine and phenylalanine are the predominant amino acids. The data suggest that the modulator is a negatively charged protein and is a good tool for distinguishing the regulation of Ca2+,Mg2+- and Ca2+-ATPase activities.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3