Characterization of a low-molecular-mass stimulator protein of Mg2+-independent Ca2+-ATPase: effect on phosphorylation/dephosphorylation, calcium transport and sperm-cell motility

Author:

Ghoshal Srabasti1,Sengupta Tanusree1,Dundung Sandhya R.2,Majumder Gopal C.2,Sen Parimal C.1

Affiliation:

1. Department of Chemistry, Bose Institute, Kolkata, 700 009, India

2. Indian Institute of Chemical Biology, Kolkata, 700 032, India

Abstract

A 14 kDa cytosolic protein purified from bovine brain homogenate has been recently reported as a stimulator of goat spermatozoa Mg2+-independent Ca2+-ATPase. In the present study, we demonstrate the formation of the [γ-32P]ATP-labelled phosphoenzyme as the 110 kDa phosphoprotein and its rapid decomposition in presence of the stimulator protein. Together with the cross-reactivity of this 110 kDa protein with an anti-SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) 2a antibody, the ATPase can now be conclusively said to belong to the SERCA family, which is activated by the stimulator. The ability of the stimulator to enhance the Ca2+ transport has been elucidated from 45Ca2+ uptake studies and was found to be sensitive to Ca2+ channel blockers. CD revealed an α-helical structure of the stimulator. The amino acid analysis suggests that it is composed primarily of hydrophobic and some acidic amino acid residues. The pI of 5.1 has been re-confirmed from two-dimensional electrophoresis. Immuno-cross-reactivity studies indicate that the stimulator or similar proteins are present in cytosolic fractions of liver, kidney or testes in different species, but brain is the richest source. Proteomic analyses of its trypsinized fragments suggest its similarity with bovine THRP (thyroid hormone-responsive protein). The physiological significance of the stimulator has been suggested from its ability to activate sperm-cell motility.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3