One-electron oxidation pathway of peroxynitrite decomposition in human blood plasma: evidence for the formation of protein tryptophan-centred radicals

Author:

PIETRAFORTE Donatella1,MINETTI Maurizio1

Affiliation:

1. Laboratorio di Biologia Cellulare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy

Abstract

Exposure of human blood plasma to peroxynitrite in the presence of 3,5-dibromo-4-nitrosobenzenesulphonic acid (DBNBS) resulted in the trapping of a strongly immobilized nitroxide radical adduct. The adduct was due to protein-centred radicals derived not only from serum albumin but also from other major plasma proteins (fibrinogen, IgG, α1-antitrypsin and transferrin). Urate significantly protected plasma from the peroxynitrite-induced DBNBSŐplasma protein adduct, whereas ascorbate and glutathione were protective at concentrations exceeding those usually found in plasma. Alkylation of plasma ŐSH groups did not affect the intensity of DBNBSŐplasma protein adduct, whereas bicarbonate increased its formation, thus showing a pro-oxidant effect. The DBNBSŐplasma protein adduct provided little structural information, but subsequent non-specific-protease treatment resulted in the detection of an isotropic three-line spectrum, indicating the trapping of radicals centred on a tertiary carbon. The nitrogen hyperfine coupling constant of this adduct and its superhyperfine structure were similar to those of DBNBSŐtryptophan peptides with the α-amino group of tryptophan linked in the amide bond, consistent with a radical adduct formed at C-3 of the indole ring of tryptophan-containing peptides. DBNBS was unable to trap radicals derived from peroxynitrite-treated tyrosine or tyrosine-containing peptides. Methionine treated with peroxynitrite resulted in the trapping of at least two DBNBSŐmethionine adducts with hyperfine structures different from that of protease-treated DBNBSŐplasma proteins. These results demonstrate that peroxynitrite induced in blood plasma the formation of protein radicals centred on tryptophan residues and underline the relevance of the one-electron oxidation pathway of peroxynitrite decomposition in biological fluids.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3