Identification of an active site cysteine residue in human type I Ins(1,4,5)P3 5-phosphatase by chemical modification and site-directed mutagenesis

Author:

COMMUNI David1,ERNEUX Christophe1

Affiliation:

1. Institute of Interdisciplinary Research, Free University of Brussels, Campus Erasme, Bldg C, Route de Lennik 808, B-1070 Brussels, Belgium

Abstract

Chemical modification using thiol-directed agents and site-directed mutagenesis have been used to investigate the crucial role of an active site cysteine residue within the substrate-binding domain of human type I Ins(1,4,5)P3 5-phosphatase. Irreversible inhibition of enzymic activity is provoked by chemical modification of the enzyme by N-ethylmaleimide (NEM), 5,5´-dithio-2-nitrobenzoic acid, iodoacetate and to a much smaller extent by iodoacetamide. The alkylation reaction by NEM is prevented in the presence of Ins(1,4,5)P3. The results indicate that NEM binds at the active site of the enzyme with a stoichiometry of 0.9 mol of NEM per mol of enzyme. A single [14C]NEM-modified peptide was isolated after α-chymotrypsin proteolysis of the radiolabelled enzyme and reverse-phase HPLC. Sequence analysis of the active site-labelled peptide (i.e. MNTRCPAWCD) demonstrated that Cys348 contained the radiolabel. Furthermore two mutant enzymes were obtained by site-directed mutagenesis of the cysteine residue to serine and alanine respectively. Both mutant enzymes had identical UV CD spectra. The two mutants (i.e. Cys348 → Ser and Cys348 → Ala) show a marked loss of enzymic activity (more than 98% compared with the wild-type enzyme). Thus we have directly identified a reactive cysteine residue as part of the active site, i.e. the substrate-binding domain, of Ins(1,4,5)P3 5-phosphatase. This cysteine residue is part of a sequence 10 amino acids long that is well conserved among the primary structures of inositol and phosphatidylinositol polyphosphate 5-phosphatases.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3