Modelling for risk and biosecurity related to forest health

Author:

Robinet Christelle1ORCID,van den Dool Robbert2,Collot Dorian1,Douma Jacob C.2

Affiliation:

1. INRAE, URZF, F-45075 Orléans, France

2. Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands

Abstract

Modelling the invasion and emergence of forest pests and pathogens (PnPs) is necessary to quantify the risk levels for forest health and provide key information for policy makers. Here, we make a short review of the models used to quantify the invasion risk of exotic species and the emergence risk of native species. Regarding the invasion process, models tackle each invasion phase, e.g. pathway models to describe the risk of entry, species distribution models to describe potential establishment, and dispersal models to describe (human-assisted) spread. Concerning the emergence process, models tackle each process: spread or outbreak. Only a few spread models describe jointly dispersal, growth, and establishment capabilities of native species while some mechanistic models describe the population temporal dynamics and inference models describe the probability of outbreak. We also discuss the ways to quantify uncertainty and the role of machine learning. Overall, promising directions are to increase the models’ genericity by parameterization based on meta-analysis techniques to combine the effect of species traits and various environmental drivers. Further perspectives consist in considering the models’ interconnection, including the assessment of the economic impact and risk mitigation options, as well as the possibility of having multi-risks and the reduction in uncertainty by collecting larger fit-for-purpose datasets.

Publisher

Portland Press Ltd.

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference82 articles.

1. Managing forests for climate change mitigation;Science,2008

2. Ecology of forest insect invasions;Biol. Invasions,2017

3. Ecology of invasive forest pathogens;Biol. Invasions,2017

4. Rosenzweig, C., Casassa, G., Karoly, D.J., Imeson, A., Liu, C., Menzel, A. et al. (2007) Assessment of observed changes and responses in natural and managed systems. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, U.K., 79–131

5. Direct impacts of recent climate warming on insect populations;Integr. Zool.,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3