Abstract
Abstract
Purpose of Review
Forest models are becoming essential tools in forest research, management, and policymaking but currently are under deep transformation. In this review of the most recent literature (2018–2022), we aim to provide an updated general view of the main topics currently attracting the efforts of forest modelers, the trends already in place, and some of the current and future challenges that the field will face.
Recent Findings
Four major topics attracting most of on current modelling efforts: data acquisition, productivity estimation, ecological pattern predictions, and forest management related to ecosystem services. Although the topics may seem different, they all are converging towards integrated modelling approaches by the pressure of climate change as the major coalescent force, pushing current research efforts into integrated mechanistic, cross-scale simulations of forest functioning and structure.
Summary
We conclude that forest modelling is experiencing an exciting but challenging time, due to the combination of new methods to easily acquire massive amounts of data, new techniques to statistically process such data, and refinements in mechanistic modelling that are incorporating higher levels of ecological complexity and breaking traditional barriers in spatial and temporal scales. However, new available data and techniques are also creating new challenges. In any case, forest modelling is increasingly acknowledged as a community and interdisciplinary effort. As such, ways to deliver simplified versions or easy entry points to models should be encouraged to integrate non-modelers stakeholders into the modelling process since its inception. This should be considered particularly as academic forest modelers may be increasing the ecological and mathematical complexity of forest models.
Funder
Universidad Pública de Navarra
Publisher
Springer Science and Business Media LLC
Subject
Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献