The role of nitro groups in the binding of nitroaromatics to protein MOPC 315

Author:

Gettins P,Givol D,Dwek R A

Abstract

Two series of dinitrophenyl haptens, in which chlorine replaces one or both nitro groups, were used to investigate, by a combination of high-resolution 1H n.m.r. and fluorescence quenching, the presence of groups in the combining site of protein MOPC 315, which form hydrogen bonds to the aromatic-ring substituents of the hapten. The large differences in binding constants on successive replacement of nitro groups were shown to be due to specific hapten-substituent-protein interactions by (a) showing that there was little difference in the interaction between these haptens and 3-methylindole (a model for the residue tryptophan-93L with which the hapten stacks in protein MOPC 315), (b) proving by 1H n.m.r. that the mode of hapten binding is constant and (c) showing that the differences in Kd were consistent with the relative hydrogen-bonding capacities of chlorine and the nitro moiety. In this way it was established that each nitro group forms a hydrogen bond. Furthermore, from consideration of the 1H n.m.r. chemical shifts of several dinitrophenyl haptens and their trinitrophenyl analogues, it was shown that there is no distortion of the o-nitro group on binding to the variable fragment of protein MOPC 315.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3