Author:
Gettins P,Givol D,Dwek R A
Abstract
Two series of dinitrophenyl haptens, in which chlorine replaces one or both nitro groups, were used to investigate, by a combination of high-resolution 1H n.m.r. and fluorescence quenching, the presence of groups in the combining site of protein MOPC 315, which form hydrogen bonds to the aromatic-ring substituents of the hapten. The large differences in binding constants on successive replacement of nitro groups were shown to be due to specific hapten-substituent-protein interactions by (a) showing that there was little difference in the interaction between these haptens and 3-methylindole (a model for the residue tryptophan-93L with which the hapten stacks in protein MOPC 315), (b) proving by 1H n.m.r. that the mode of hapten binding is constant and (c) showing that the differences in Kd were consistent with the relative hydrogen-bonding capacities of chlorine and the nitro moiety. In this way it was established that each nitro group forms a hydrogen bond. Furthermore, from consideration of the 1H n.m.r. chemical shifts of several dinitrophenyl haptens and their trinitrophenyl analogues, it was shown that there is no distortion of the o-nitro group on binding to the variable fragment of protein MOPC 315.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献